
Intel Architecture Software Developer’s Manual 59-333

W

W 59

59.1 WAIT/FWAIT—Wait

Description
Causes the processor to check for and handle pending, unmasked, floating-point exceptions before
proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a WAIT
instruction after a floating-point instruction insures that any unmasked floating-point exceptions
the instruction may raise are handled before the processor can modify the instruction’s results. See
“Floating-Point Exception Synchronization”, for more information on using the WAIT/FWAIT
instruction.

Operation
CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM MP and TS in CR0 is set.

Real-Address Mode Exceptions
#NM MP and TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.

59-334 Intel Architecture Software Developer’s Manual

W

59.2 WBINVD—Write Back and Invalidate Cache

Description
Writes back all modified cache lines in the processor’s internal cache to main memory and
invalidates (flushes) the internal caches. The instruction then issues a special-function bus cycle
that directs external caches to also write back modified data and another bus cycle to indicate that
the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete
their write-back and flushing operations before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache write-back and flush signals.

The WDINVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction is
also a serializing instruction (see “Serializing Instructions” in Chapter 7 of the Intel Architecture
Software Developer’s Manual, Volume 3).

In situations where cache coherency with main memory is not a concern, software can use the
INVD instruction.

Intel Architecture Compatibility
The WBINVD instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. The instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation
WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) The WBINVD instruction cannot be executed at the virtual-8086 mode.

Opcode Instruction Description

0F 09 WBINVD Write back and flush Internal caches; initiate writing-back
and flushing of external caches.

Intel Architecture Software Developer’s Manual 59-335

W

59.3 WRMSR—Write to Model Specific Register

Description
Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified
in the ECX register. The high-order 32 bits are copied from EDX and the low-order 32 bits are
copied from EAX. Always set the undefined or reserved bits in an MSR to the values previously
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general
protection exception #GP(0) will be generated. Specifying a reserved or unimplemented MSR
address in ECX will also cause a general protection exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated, including
the global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel
Architecture Software Developer’s Manual, Volume 3). (MTRRs are an implementation-specific
feature of the Pentium Pro processor.)

The MSRs control functions for testability, execution tracing, performance monitoring and
machine check errors. Appendix B, Model-Specific Registers (MSRs), in the Intel Architecture
Software Developer’s Manual, Volume 3, lists all the MSRs that can be written to with this
instruction and their addresses.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7 of
the Intel Architecture Software Developer’s Manual, Volume 3).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

Intel Architecture Compatibility
The MSRs and the ability to read them with the WRMSR instruction were introduced into the Intel
Architecture with the Pentium processor. Execution of this instruction by an Intel Architecture
processor earlier than the Pentium processor results in an invalid opcode exception #UD.

Operation
MSR[ECX] ← EDX:EAX;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX

59-336 Intel Architecture Software Developer’s Manual

W

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

